A Plasmodium falciparum screening assay for anti-gametocyte drugs based on parasite lactate dehydrogenase detection.

D’Alessandro S. et al., J Antimicrob Chemother. 2013 Sep

ABSTRACT

OBJECTIVES: Plasmodium gametocytes, responsible for malaria parasite transmission from humans to mosquitoes, represent a crucial target for new antimalarial drugs to achieve malaria elimination/eradication. We developed a novel colorimetric screening method for anti-gametocyte compounds based on the parasite lactate dehydrogenase (pLDH) assay, already standardized for asexual stages, to measure gametocyte viability and drug susceptibility.
METHODS: Gametocytogenesis of 3D7 and NF54 Plasmodium falciparum strains was induced in vitro and asexual parasites were depleted with N-acetylglucosamine. Gametocytes were treated with dihydroartemisinin, epoxomicin, methylene blue, primaquine, puromycin or chloroquine in 96-well plates and the pLDH activity was evaluated using a modified Makler protocol. Mosquito infectivity was measured by the standard membrane feeding assay (SMFA).
RESULTS: A linear correlation was found between gametocytaemia determined by Giemsa staining and pLDH activity. A concentration-dependent reduction in pLDH activity was observed after 72 h of drug treatment, whereas an additional 72 h of incubation without drugs was required to obtain complete inhibition of gametocyte viability. SMFA on treated and control gametocytes confirmed that a reduction in pLDH activity translates into reduced oocyst development in the mosquito vector.
CONCLUSIONS: The gametocyte pLDH assay is fast, easy to perform, cheap and reproducible and is suitable for screening novel transmission-blocking compounds, which does not require parasite transgenic lines.

full publication